Griffiths-Harris rigidity of compact Hermitian symmetric spaces Academic Article uri icon

abstract

  • I prove that any complex manifold that has a projective second fundmental form isomorphic to one of a rank two compact Hermitian symmetric space (other than a quadric hypersurface) at a general point must be an open subset of such a space. This contrasts the non-rigidity of all other compact Hermitian symmetric spaces observed in [12, 13]. A key step is the use of higher order Bertini type theorems that may be of interest in their own right. © 2006 Applied Probability Trust.

author list (cited authors)

  • Landsberg, J. M.

citation count

  • 9

publication date

  • November 2006