Impact of pH and feeding system on black soldier fly (Hermetia illucens, L; Diptera: Stratiomyidae) larval development. Academic Article uri icon


  • Black soldier fly (BSF) is a generalist species able to reduce large quantities of organic substrates and is thus considered as an interesting solution for waste management. Moreover, as BSF larvae accumulate high quantities of nutrients during their growth, they are valued because of their potential to produce products such as protein meal or fat for livestock feeds. Abiotic factors can influence larva growth, and a more detailed knowledge and control of these parameters can lead to the development of mass BSF breeding for the production of innovative products for animal feeds. As little information is available on the effects of the pH of substrates and feeding systems, the aim of this study was to evaluate the impact of these two factors on the activities of BSF larvae, prepupae, and adults. An experiment was performed with two fixed factors: i) pH (4.0; 6.1; 7.5; 9.5) and ii) feeding system (batch feeding system (TFS) or daily feeding system (DFS)). The pH treatments impacted larval weight on the first, third, and fifth day, but not at the end of the trial. Larval activity increased pH values from the fourth day onward, with final values of around 8.9-9.4 in all the treatments. The weight of the prepupae ranged from between 0.094 and 0.100 g. The final weight of the larvae and pupae, sex ratio, ingested food, larval mortality, percentage of emergence, and time to reach the pupa stadium were all affected by the feeding system. DFS showed the heaviest final larval weight (0.149 g), but required a longer time (11.3 d) than TFS to reach the prepupa stadium. The findings of this research could be useful for the mass production of BSF. Evaluation of an appropriate feeding system and initial pH value of the substrate are important parameters to reduce the time and to increase the weight in the production of larvae.

published proceedings

  • PLoS One

altmetric score

  • 0.5

author list (cited authors)

  • Meneguz, M., Gasco, L., & Tomberlin, J. K.

citation count

  • 65

complete list of authors

  • Meneguz, Marco||Gasco, Laura||Tomberlin, Jeffery K

editor list (cited editors)

  • Falabella, P.

publication date

  • August 2018