Effect of Vegetation on the Energy Balance and Evapotranspiration in Tallgrass Prairie: A Paired Study Using the Eddy-Covariance Method Academic Article uri icon

abstract

  • © 2018, Springer Nature B.V. We carried out a paired study in tallgrass prairie to evaluate the influence of vegetation on the energy exchange and evapotranspiration. Two eddy-covariance systems were installed over two adjoining sites, one of which was denuded of vegetation, with the adjacent, control site kept undisturbed. Our year-long investigation shows that, for quantifying the ground surface heat flux, the soil heat storage above the soil plates is more important than the sub-surface soil heat flux, both temporally and in magnitude. The incorporation of the soil heat storage, therefore, is indispensable for energy balance closure in areas with short vegetation. At our control site, we observed a critical threshold of 0.17 m 3  m −3 in the surface (top 0.3 m) soil water content, whereby the energy partitioning is significantly affected by the presence of the photosynthetically active vegetation when the surface soil water content is higher than this critical threshold. The pattern of energy partitioning approaches that of the treated site when the surface soil water content is lower than this threshold (during drought), because of the suppression of plant physiological activities. This threshold also applies to the surface conductance for water vapour at the control site, where yearly evapotranspiration is 728 ± 3 mm (versus 547 ± 2 mm for the treated site). Thus, the soil water content and presence of active vegetation are the key determinants of energy partitioning and evapotranspiration. Any land-cover changes or vegetation-management practices that alter these two factors may change the energy and water budgets in tallgrass prairie.

altmetric score

  • 1

author list (cited authors)

  • Sun, X., Zou, C. B., Wilcox, B., & Stebler, E.

citation count

  • 7

publication date

  • January 2019