Long-term hypoxia exposure alters the cardiorespiratory physiology of steelhead trout (Oncorhynchus mykiss), but does not affect their upper thermal tolerance. Academic Article uri icon


  • It has been suggested that exposure to high temperature or hypoxia may confer tolerance to the other oxygen-limited stressor (i.e., 'cross-tolerance'). Thus, we investigated if chronic hypoxia-acclimation (>3 months at 40% air saturation) improved the steelhead trout's critical thermal maximum (CTMax), or affected key physiological variables that could impact upper thermal tolerance. Neither CTMax (24.7 vs. 25.3C) itself, nor oxygen consumption ( [Formula: see text] ), haematocrit, blood haemoglobin concentration, or heart rate differed between hypoxia- and normoxia-acclimated trout when acutely warmed. However, the cardiac output (Q) of hypoxia-acclimated fish plateaued earlier compared to normoxia-acclimated fish due to an inability to maintain stroke volume (SV), and this resulted in a ~50% lower maximum Q. Despite this reduced maximum cardiac function, hypoxia-acclimated trout were able to consume more O2 per volume of blood pumped as evidenced by the equivalent [Formula: see text] . These results provide additional evidence that long-term hypoxia improves tissue oxygen utilization, and that this compensates for diminished cardiac pumping capacity. The limited SV in hypoxia-acclimated trout in vivo was not associated with changes in cardiac morphology or in vitro maximum SV, but the affinity and density of myocardial -adrenoreceptors were lower and higher, respectively, than in normoxia-acclimated fish. These data suggest that alterations in ventricular filling dynamics or myocardial contractility constrain cardiac function in hypoxia-acclimated fish at high temperatures. Our results do not support (1) 'cross-tolerance' between high temperature and hypoxia when hypoxia is chronic, or (2) that cardiac function is always the determinant of temperature-induced changes in fish [Formula: see text] , and thus thermal tolerance, as suggested by the oxygen- and capacity-limited thermal tolerance (OCLTT) theory.

published proceedings

  • J Therm Biol

altmetric score

  • 4.2

author list (cited authors)

  • Motyka, R., Norin, T., Petersen, L. H., Huggett, D. B., & Gamperl, A. K.

citation count

  • 48

complete list of authors

  • Motyka, Roman||Norin, Tommy||Petersen, Lene H||Huggett, Duane B||Gamperl, A Kurt

publication date

  • August 2017