Quantifying the impact of building envelope condition on energy use Academic Article uri icon

abstract

  • © 2018, © 2018 Informa UK Limited, trading as Taylor & Francis Group. The gap between the architectural information and the as-is building condition has been known as one of the pivotal factors influencing deviations between actual and predicted building energy consumption. Despite such significance, quantifying the impact of deviated building information on energy use has not been fully investigated. This paper explores building information modelling (BIM)-driven experimental simulation to quantify the impact of building envelope condition on energy use, which can infer the impact of reflecting the as-is building conditions in as-designed BIMs on the reliability of energy analysis. First, BIM-driven energy simulations are conducted with varied thermo-physical properties of building envelope elements in gbXML-based BIMs under different climate conditions. Building upon the impacting factor for energy analysis (IFEA), the simulation results are then used to infer the impact of the deviated building condition on energy consumption. Through case studies, it is observed that the annual energy consumption of a residential building can deviate by 18–20%, whereas thermal resistances of exterior walls can deviate by 1 m2K/W. This paper validates quantitatively the potential benefits of reflecting the as-is building condition in BIM-based energy performance analysis. This provides practitioners with insights into how to improve the reliability of energy analysis of existing buildings.

altmetric score

  • 3.7

author list (cited authors)

  • Jeon, J., Lee, J., & Ham, Y.

citation count

  • 11

publication date

  • May 2019