Hybrid discretization of multi-phase flow in porous media in the presence of viscous, gravitational, and capillary forces Academic Article uri icon


  • 2018, Springer Nature Switzerland AG. Multi-phase flow in porous media in the presence of viscous, gravitational, and capillary forces is described by advection diffusion equations with nonlinear parameters of relative permeability and capillary pressures. The conventional numerical method employs a fully implicit finite volume formulation. The phase-potential-based upwind direction is commonly used in computing the transport terms between two adjacent cells. The numerical method, however, often experiences non-convergence in a nonlinear iterative solution due to the discontinuity of transmissibilities, especially in transition between co-current and counter-current flows. Recently, Lee et al. (Adv. Wat. Res. 82, 2738, 2015) proposed a hybrid upwinding method for the two-phase transport equation that comprises viscous and gravitational fluxes. The viscous part is a co-current flow with a one-point upwinding based on the total velocity and the buoyancy part is modeled by a counter-current flow with zero total velocity. The hybrid scheme yields C1-continuous discretization for the transport equation and improves numerical convergence in the Newton nonlinear solver. Lee and Efendiev (Adv. Wat. Res. 96, 209224, 2016) extended the hybrid upwind method to three-phase flow in the presence of gravity. In this paper, we present the hybrid-upwind formula in a generalized form that describes two- and three-phase flows with viscous, gravity, and capillary forces. In the derivation of the hybrid scheme for capillarity, we note that there is a strong similarity in mathematical formulation between gravity and capillarity. We thus greatly utilize the previous derivation of the hybrid upwind scheme for gravitational force in deriving that for capillary force. Furthermore, we also discuss some mathematical issues related to heterogeneous capillary domains and propose a simple discretization model by adapting multi-valued capillary pressures at the end points of capillary pressure curves. We demonstrate this new model always admits a consistent solution that is within the discretization error. This new generalized hybrid scheme yields a discretization method that improves numerical stability in reservoir simulation.

published proceedings

  • Computational Geosciences

author list (cited authors)

  • Lee, S. H., & Efendiev, Y.

complete list of authors

  • Lee, SH||Efendiev, Y

publication date

  • January 1, 2018 11:11 AM