Cloning and characterization of Methoprene-tolerant (Met) and Krppel homolog 1 (Kr-h1) genes in the wheat blossom midge, Sitodiplosis mosellana.
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
Juvenile hormone (JH), a growth regulator, inhibits ecdysteroid-induced metamorphosis and controls insect development and diapause. Methoprene-tolerant (Met) and Krppel homolog 1 (Kr-h1) are two proteins involved in JH action. To gain some insight into their function in development of Sitodiplosis mosellana, an insect pest undergoing obligatory larval diapause at the mature 3rd instar stage, we cloned full-length complementary DNAs of Met and Kr-h1 from this species. SmMet encoded a putative protein, which contained three domains typical of the bHLH-PAS family and eight conserved amino acid residues important for JH binding. SmKr-h1 encoded a protein showing high sequence homology to its counterparts in other species, and contained all eight highly conserved Zn-finger motifs for DNA-binding. Expression patterns of SmMet and SmKr-h1 were developmentally regulated and JH III responsive as well. Their mRNA abundance increased as larvae entered early 3rd instar, pre-diapause and maintenance stages, and peaked during post-diapause quiescence, a pattern correlated with JH titers in this species. Different from reduced expression of SmMet, SmKr-h1 mRNA increased at mid-to-late period of post-diapause development. Topical application of JH III on diapausing larvae also induced the two genes in a dose-dependent manner. Expression of SmMet and SmKr-h1 clearly declined in the pre-pupal phase, and was significantly higher in female adults than male adults. These results suggest that JH-responsive SmMet and SmKr-h1 might play key roles in diapause induction and maintenance as well as in post-diapause quiescence and adult reproduction, whereas metamorphosis from larvae to pupae might be correlated with their reduced expression.