LNG pool fire simulation for domino effect analysis Academic Article uri icon

abstract

  • 2015 Elsevier Ltd Abstract A three-dimensional computational fluid dynamics (CFD) simulation of liquefied natural gas (LNG) pool fire has been performed using ANSYS CFX-14. The CFD model solves the fundamental governing equations of fluid dynamics, namely, the continuity, momentum and energy equations. Several built-in sub-models are used to capture the characteristics of pool fire. The Reynolds-averaged Navier-Stokes (RANS) equation for turbulence and the eddy-dissipation model for non-premixed combustion are used. For thermal radiation, the Monte Carlo (MC) radiation model is used with the Magnussen soot model. The CFD results are compared with a set of experimental data for validation; the results are consistent with experimental data. CFD results show that the wind speed has significant contribution on the behavior of pool fire and its domino effects. The radiation contours are also obtained from CFD post processing, which can be applied for risk analysis. The outcome of this study will be helpful for better understanding of the domino effects of pool fire in complex geometrical settings of process industries.

published proceedings

  • RELIABILITY ENGINEERING & SYSTEM SAFETY

author list (cited authors)

  • Jujuly, M. M., Rahman, A., Ahmed, S., & Khan, F.

citation count

  • 56

complete list of authors

  • Jujuly, Muhammad Masum||Rahman, Aziz||Ahmed, Salim||Khan, Faisal

publication date

  • November 2015