Synthesis of Carbon Integration Networks Coupled with Hydrate Suppression and Dehydration Options Academic Article uri icon


  • Abstract The excessive increase in carbon dioxide emissions through the past several decades has raised global climate change concerns. As such, environmental policy makers have been looking into the implementation of efficient strategies that would ultimately reduce greenhouse gas (GHG) emission levels, and meet strict emissions targets. As part of a national emission reduction strategy, the reduction of carbon-dioxide emissions from industrial activities has been proven to be very significant. This instigated the need for a systematic carbon integration approach that can yield cost-effective carbon integration networks, while meeting prescribed carbon dioxide emission reduction targets in industrial cities. A novel carbon integration methodology has been previously proposed as a carbon network source-sink mapping approach using a Mixed Integer Nonlinear Program (MINLP), and was found to be very effective to devise emission control strategies in industrial cities. This paper aims to further improve the design process of carbon integration networks, by coupling carbon integration networks with hydrate suppression/moisture removal options. This was found vital for the prevention of any potential hazards that are associated with the transportation of carbon dioxide in pipelines, such as hydrate formation and various corrosion effects, which may result from moisture retention. An extensive analysis of carbon capture, dehydration, inhibition, compression, and transmission options have all been incorporated into the network design process, in the course of determining cost-optimal solutions for carbon dioxide networks. The proposed approach has been illustrated using an industrial city case study.

published proceedings


author list (cited authors)

  • Klaimi, R., Alnouri, S. Y., Al-Mohannadi, D., Zeaiter, J., & Linke, P.

citation count

  • 1

complete list of authors

  • Klaimi, Rachid||Alnouri, Sabla Y||Al-Mohannadi, Dhabia||Zeaiter, Joseph||Linke, Patrick

publication date

  • December 2018