Polychromatic solitons and symmetry breaking in curved waveguide arrays.
Academic Article
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
We theoretically and experimentally study the nonlinear propagation of polychromatic light in curved waveguide arrays. We show that at moderate light powers the nonlinear self-action breaks the left-right symmetry of the polychromatic beam, resulting in the separation of different spectral components owing to the wavelength-dependent spatial shift. At high light powers a diffraction-managed polychromatic soliton is formed. These results demonstrate new possibilities for tunable demultiplexing and spatial filtering of supercontinuum light.