Diffraction control in periodically curved two-dimensional waveguide arrays.
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
We study propagation of light beams in two-dimensional photonic lattices created by periodically curved waveguide arrays. We demonstrate that by designing the waveguide bending, one can control not only the strength and sign of the beam diffraction, but also to engineer the effective geometry and even dimensionality of the two-dimensional photonic lattice. We reveal that diffraction of different spectral components of polychromatic light can display completely different patterns in the same periodically modulated structure, e.g. one-dimensional, hexagonal, or rectangular. Our results suggest novel opportunities for efficient self-collimation, focusing, and reshaping of light beams in two-dimensional photonic structures.