Comparison of KBr and NaCl effects on the glass transition temperature of hydrated layer-by-layer assemblies.
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
The influence of assembly and post-assembly conditions on the glass transition temperature of free-standing poly(diallyldimethyl ammonium) (PDADMA)/poly(4-styrene sulfonate) (PSS) layer-by-layer (LbL) films assembled in 0.5M NaCl and 0.5M KBr are explored using modulated differential scanning calorimetry. Upon completion, PDADMA/PSS LbL assemblies are hydrated using solutions containing various concentrations of KBr. The data indicate that water provides the primary driving force for changes in the glass transition temperature of completed films rather than the post-assembly salt type. However, upon changing the assembly salt conditions from NaCl to KBr, the glass transition temperature shows a decrease of nearly 20 C. Additionally, the composition of the films upon analysis with 1H NMR spectroscopy and neutron activation analysis indicates an elevated number of extrinsic binding sites within the film structure when KBr is the assembly salt. This shows a clear link between the assembly conditions and the internal structure and, therefore, the thermal properties of PDADMA/PSS LbL assemblies.