Function and CO binding properties of the NiFe complex in carbon monoxide dehydrogenase from Clostridium thermoaceticum. uri icon

abstract

  • Adding 1,10-phenanthroline to carbon monoxide dehydrogenase from Clostridium thermoaceticum results in the complete loss of the NiFeC EPR signal and the CO/acetyl-CoA exchange activity. Other EPR signals characteristic of the enzyme (the gav = 1.94 and gav = 1.86 signals) and the CO oxidation activity are completely unaffected by the 1,10-phenanthroline treatment. This indicates that there are two catalytic sites on the enzyme; the NiFe complex is required for catalyzing the exchange and acetyl-CoA synthase reactions, while some other site is responsible for CO oxidation. The strength of CO binding to the NiFe complex was examined by titrating dithionite-reduced enzyme with CO. During the titration, the NiFeC EPR signal developed to a final spin intensity of 0.23 spin/alpha beta. The resulting CO titration curve (NiFeC spins/alpha beta vs CO pha beta) was fitted using two reactions: binding of CO to the oxidized NiFe complex, and reduction of the CO-bound species to a form that exhibits the NiFeC signal. Best fits yielded apparent binding constants between 6000 and 14,000 M-1 (Kd = 70-165 microM). This sizable range is due to uncertainty whether CO binds to all or only a small fraction (approximately 23%) of the NiFe complexes. Reduction of the CO-bound NiFe complex is apparently required to activate it for catalysis. The electron used for this reduction originates from the CO oxidation site, suggesting that delivery of a low-potential electron to the CO-bound NiFe complex is the physiological function of the CO oxidation reaction catalyzed by this enzyme.

published proceedings

  • Biochemistry

author list (cited authors)

  • Shin, W., & Lindahl, P. A.

citation count

  • 41

complete list of authors

  • Shin, W||Lindahl, PA

publication date

  • December 1992