Electromagnetically induced transparency from two-phonon processes in quadratically coupled membranes
Academic Article
Overview
Identity
Additional Document Info
Other
View All
Overview
abstract
We describe how electromagnetically induced transparency can arise in quadratically coupled optomechanical systems. Due to quadratic coupling, the underlying optical process involves a two-phonon process in an optomechanical system, and this two-phonon process makes the mean displacement, which plays the role of atomic coherence in traditional electromagnetically induced transparency (EIT), zero. We show how the fluctuation in displacement can play a role similar to atomic coherence and can lead to EIT-like effects in quadratically coupled optomechanical systems. We show how such effects can be studied using the existing optomechanical systems. 2011 American Physical Society.