The evolution of acetyl-CoA synthase. Academic Article uri icon


  • Acetyl-coenzyme A synthases (ACS) are Ni-Fe-S containing enzymes found in archaea and bacteria. They are divisible into 4 classes. Class I ACS's catalyze the synthesis of acetyl-CoA from CO2 + 2e-, CoA, and a methyl group, and contain 5 types of subunits (alpha, beta, gamma, delta, and epsilon). Class II enzymes catalyze essentially the reverse reaction and have similar subunit composition. Class III ACS's catalyze the same reaction as Class I enzymes, but use pyruvate as a source of CO2 and 2e-, and are composed of 2 autonomous proteins, an alpha 2 beta 2 tetramer and a gamma delta heterodimer. Class IV enzymes catabolize CO to CO2 and are alpha-subunit monomers. Phylogenetic analyses were performed on all five subunits. ACS alpha sequences divided into 2 major groups, including Class I/II sequences and Class III/IV-like sequences. Conserved residues that may function as ligands to the B- and C-clusters were identified. Other residues exclusively conserved in Class I/II sequences may be ligands to additional metal centers in Class I and II enzymes. ACS beta sequences also separated into two groups, but they were less divergent than the alpha's, and the separation was not as distinct. Class III-like beta sequences contained approximately 300 residues at their N-termini absent in Class I/II sequences. Conserved residues identified in beta sequences may function as ligands to active site residues used for acetyl-CoA synthesis. ACS gamma-sequences separated into 3 groups (Classes I, II, and III), while delta-sequences separated into 2 groups (Class I/II and III). These groups are less divergent than those of alpha sequences. ACS epsilon-sequence topology showed greater divergence and less consistency vis--vis the other subunits, possibly reflecting reduced evolutionary constraints due to the absence of metal centers. The alpha subunit phylogeny may best reflect the functional diversity of ACS enzymes. Scenarios of how ACS and ACS-containing organisms may have evolved are discussed.

published proceedings

  • Orig Life Evol Biosph

author list (cited authors)

  • Lindahl, P. A., & Chang, B.

citation count

  • 61

complete list of authors

  • Lindahl, PA||Chang, B

publication date

  • January 2001