Class of solitary wave solutions of the one-dimensional Gross-Pitaevskii equation.
Academic Article
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
We present a large family of exact solitary wave solutions of the one-dimensional Gross-Pitaevskii equation, with time-varying scattering length and gain or loss, in both expulsive and regular parabolic confinement regimes. The consistency condition governing the soliton profiles is shown to map onto a linear Schrdinger eigenvalue problem, thereby enabling one to find analytically the effect of a wide variety of temporal variations in the control parameters, which are experimentally realizable. Corresponding to each solvable quantum mechanical system, one can identify a soliton configuration. These include soliton trains in close analogy to experimental observations of Streckeret al. [Nature (London) 417, 150 (2002)], spatiotemporal dynamics, solitons undergoing rapid amplification, collapse and revival of condensates, and analytical expression of two-soliton bound states, to name a few.