Robust Trajectory Tracking Controller for Vision Based Probe and Drogue Autonomous Aerial Refueling Conference Paper uri icon


  • This paper addresses autonomous aerial refueling between an unmanned tanker aircraft and an unmanned receiver aircraft using the probe-and-drogue method. An important consideration is the ability to achieve successful docking in the presence of exogenous inputs such as atmospheric turbulence. Practical probe and drogue autonomous aerial refueling requires a reliable sensor capable of providing accurate relative position measurements of sufficient bandwidth, integrated with a robust relative navigation and control algorithm. This paper develops a Reference Observer Based Tracking Controller that does not require a model of the drogue or presumed knowledge of its position, and integrates it with an existing vision based relative navigation sensor. A trajectory generation module is used to translate the relative drogue position measured by the sensor into a smooth reference trajectory, and an output injection observer is used to estimate the states to be tracked by the receiver aircraft. Accurate tracking is provided by a state feedback controller with good disturbance rejection properties. A frequency domain stability analysis for the combined reference observer and controller shows that the system is robust to sensor noise, atmospheric turbulence, and high frequency unmodeled dynamics. Feasibility and performance of the total system is demonstrated by simulated docking maneuvers of an unmanned receiver aircraft docking with the non-stationary drogue of an unmanned tanker, in the presence of atmospheric turbulence. Performance characteristics of the vision based relative navigation sensor are also investigated, and the total system is compared to an earlier version. Results presented in the paper indicate that the integrated sensor and controller enable precise aerial refueling, including consideration of realistic measurements errors, plant modeling errors, and disturbances.

name of conference

  • AIAA Guidance, Navigation, and Control Conference and Exhibit

published proceedings

  • AIAA Guidance, Navigation, and Control Conference and Exhibit

author list (cited authors)

  • Tandale, M., Bowers, R., & Valasek, J.

citation count

  • 45

complete list of authors

  • Tandale, Monish||Bowers, Roshawn||Valasek, John

publication date

  • June 2005