Mechanistic Insights into Iridium‐Catalyzed Asymmetric Hydrogenation of Dienes Academic Article uri icon

abstract

  • Hydrogenation of 2,3-diphenylbutadiene (1) with the chiral carbene-oxazoline-iridium complex C has been studied by means of a combined experimental and computational approach. A detailed kinetic profile of the reaction was obtained with respect to consumption of the substrate and formation of the intermediate half-reduction products, 2,3-diphenylbut-1-ene (2) and the final product, 2,3-diphenylbutane (3). The data generated from these analyses, and from NMR experiments, revealed several facets of the reaction. After a brief induction period (presumably involving reduction of the cyclooctadiene ligand on C), the diene concentration declines in a zero-order process primarily to give monoene intermediates. When all the diene is consumed, the reaction accelerates and compound 3 begins to accumulate. Interestingly, the prevalent enantiomer of the monoene intermediate 2 is converted mostly to meso-3 so the enantioselectivity of the reaction appears to reverse. The reaction seems to be first-order with respect to the catalyst when the catalyst concentration is less than 0.0075 M; diffusion of hydrogen across the gas-liquid interface complicates the analysis at higher catalyst concentrations. Similarly, these diffusion effects complicated measurements of reaction rate versus applied pressure of dihydrogen; other factors like stir speed and flask geometry come into play under some, but not all, the conditions examined. Density functional theory (DFT) calculations, using the PBE method, were used to probe the reaction. These studies indicate a transoid-eta(4)-diene-dihydride complex forms in the first stages of the catalytic cycle. Further reaction requires dissociation of one alkene ligand to give a eta(2)-diene-dihydride-dihydrogen intermediate. A catalytic cycle that features Ir(3+)/Ir(5+) seems to be involved thereafter.

author list (cited authors)

  • Cui, X., Fan, Y., Hall, M. B., & Burgess, K.

citation count

  • 73

publication date

  • September 2005

publisher