Electrodynamic dust shield performance under simulated operating conditions for solar energy applications Academic Article uri icon

abstract

  • © 2018 Elsevier B.V. Electrodynamic dust shield (EDS) uses traveling-wave or standing-wave electrodynamic effects to repel dust particles from a surface, and has been proposed as a potential anti-dust solution for mitigating soiling loss in solar energy applications. In this study, a standing-wave EDS technique was tested in a cyclic manner at field-relevant dust loading levels using dust deposited by aerosol deposition, in order to assess the EDS’ dust removal efficiency under simulated real-world operating conditions. Tests using sieve deposition and the single-operation mode were also carried out for comparison. Each single-operation test only used freshly-deposited dust with a single activation of the EDS, and the results showed that the dust removal efficiency with aerosol deposition to be moderately lower than that with sieve deposition. In contrast, a cyclic-operation test consisted of many consecutive cycles, which began with the first cycle using freshly-deposited dust, and each additional cycle having new dust added on top of the persistent dust from the previous cycle. The cyclic-operation dust removal efficiency was found to be strongly dependent on the dust deposition method. Using aerosol deposition, the cyclic-operation efficiency continually decreased as the number of cycles increased; with sieve deposition, the cyclic-operation EDS efficiency fluctuated and had a much higher average value than with aerosol deposition. The different behaviors of the cyclic-operation EDS efficiency can be modeled with two hypothetical scenarios, based on how the persistent dust from a previous cycle reacts to EDS activation. However, the physical mechanisms behind the different behaviors are not well understood. The results from this study suggest that further research is critically needed for evaluating the effectiveness of electrodynamic anti-dust solutions for solar energy applications in dusty environments.

altmetric score

  • 0.25

author list (cited authors)

  • Guo, B., Javed, W., Pett, C., Wu, C., & Scheffe, J. R.

citation count

  • 14

publication date

  • October 2018