Quantifying alkane emissions in the Eagle Ford Shale using boundary layer enhancement Academic Article uri icon

abstract

  • Abstract. The Eagle Ford Shale in southern Texas is home to a booming unconventional oil and gas industry, the climate and air quality impacts of which remain poorly quantified due to uncertain emission estimates. We used the atmospheric enhancement of alkanes from Texas Commission on Environmental Quality volatile organic compound monitors across the shale, in combination with back trajectory and dispersion modeling, to quantify C2C4 alkane emissions for a region in southern Texas, including the core of the Eagle Ford, for a set of 68days from July2013 to December2015. Emissions were partitioned into raw natural gas and liquid storage tank sources using gas and headspace composition data, respectively, and observed enhancement ratios. We also estimate methane emissions based on typical ethane-to-methane ratios in gaseous emissions. The median emission rate from raw natural gas sources in the shale, calculated as a percentage of the total produced natural gas in the upwind region, was 0.7% with an interquartile range (IQR) of 0.51.3%, below the US Environmental Protection Agency's (EPA) current estimates. However, storage tanks contributed 17% of methane emissions, 55% of ethane, 82% percent of propane, 90% of n-butane, and 83% of isobutane emissions. The inclusion of liquid storage tank emissions results in a median emission rate of 1.0% (IQR of 0.71.6%) relative to produced natural gas, overlapping the current EPA estimate of roughly 1.6%. We conclude that emissions from liquid storage tanks are likely a major source for the observed non-methane hydrocarbon enhancements in the Northern Hemisphere.

published proceedings

  • ATMOSPHERIC CHEMISTRY AND PHYSICS

altmetric score

  • 79.5

author list (cited authors)

  • Roest, G., & Schade, G.

citation count

  • 22

complete list of authors

  • Roest, Geoffrey||Schade, Gunnar

publication date

  • January 1, 2017 11:11 AM