A NANOPLASMONIC SWITCH BASED ON MOLECULAR MACHINES
Conference Paper
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
We aim to develop a molecular-machine-driven nanoplasmonic switch for its use in future nanophotonic integrated circuits (ICs) that have applications in optical communication, information processing, biological and chemical sensing. Experimental data show that an Au nanodisk array, coated with rotaxane molecular machines, switches its localized surface plasmon resonances (LSPR) reversibly when it is exposed to chemical oxidants and reductants. Conversely, bare Au nanodisks and disks coated with mechanically inert control compounds, do not display the same switching behavior. Along with calculations based on time-dependent density functional theory (TDDFT), these observations suggest that the nanoscale movements within surface-bound "molecular machines" can be used as the active components in plasmonic devices. 2009 IEEE.
name of conference
TRANSDUCERS 2009 - 2009 International Solid-State Sensors, Actuators and Microsystems Conference