Vortex solitons at the boundaries of photonic lattices. Academic Article uri icon

abstract

  • Using numerical analysis we demonstrate the existence of vortex solitons at the edge and in the corners of two-dimensional triangular photonic lattice. We develop a concise picture of their behavior in both single-propagating and counterpropagating beam geometries. In the single-beam geometry, we observe stable surface vortex solitons for long propagation distances only in the form of discrete six-lobe solutions at the edge of the photonic lattice. Other observed solutions, in the form of ring vortex and discrete solitons with two or three lobes, oscillate during propagation in a way indicating the exchange of power between neighboring lobes. For higher beam powers we observe dynamical instabilities of surface vortex solitons and study orbital angular momentum transfer of such vortex states. In the two-beam counterpropagating geometry, all kinds of vortex solutions are stable for propagation distances of the order of typical experimental crystal lengths.

author list (cited authors)

  • Jović, D., Denz, C., & Belić, M.

citation count

  • 5

publication date

  • December 2011