Dynamics of counterpropagating multipole vector solitons.
Academic Article
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
Dynamical behavior of counterpropagating (CP) mutually incoherent vector solitons in a 5 x 5 x 23 mm SBN:60Ce photorefractive crystal is investigated. Experimental study is carried out, displaying rich dynamics of three-dimensional CP solitons and higher-order multipole structures, and a theory formulated that is capable of capturing such dynamics. We find that our numerical simulations agree well with the experimental findings for various CP beam structures. Linear stability analysis is also performed, predicting a threshold for the modulational instability of CP beams, and an appropriate control parameter is identified. We attempt at utilizing these results to CP solitons, but find only qualitative agreement with the numerical simulations and experimental findings. However, when broader hyper-Gaussian CP beams are used in simulations, an improved agreement with the theory is obtained.