Coherent quantum hollow beam creation in a plasma wakefield accelerator Conference Paper uri icon

abstract

  • A theoretical investigation of the propagation of a relativistic electron (or positron) particle beam in an overdense magnetoactive plasma is carried out within a fluid plasma model, taking into account the individual quantum properties of beam particles. It is demonstrated that the collective character of the particle beam manifests mostly through the self-consistent macroscopic plasma wakefield created by the charge and the current densities of the beam. The transverse dynamics of the beam-plasma system is governed by the Schrödinger equation for a single-particle wavefunction derived under the Hartree mean field approximation, coupled with a Poisson-like equation for the wake potential. These two coupled equations are subsequently reduced to a nonlinear, non-local Schrödinger equation and solved in a strongly non-local regime. An approximate Glauber solution is found analytically in the form of a Hermite-Gauss ring soliton. Such non-stationary ('breathing' and 'wiggling') coherent structure may be parametrically unstable and the corresponding growth rates are estimated analytically. © Cambridge University Press 2013.

author list (cited authors)

  • JOVANOVIĆ, D., FEDELE, R., TANJIA, F., DE NICOLA, S., & BELIĆ, M.

citation count

  • 5

publication date

  • February 2013