Follicle Microstructure and Innervation Vary between Pinniped Micro- and Macrovibrissae. Academic Article uri icon

abstract

  • Histological data from terrestrial, semiaquatic, and fully aquatic mammal vibrissa (whisker) studies indicate that follicle microstructure and innervation vary across the mystacial vibrissal array (i.e. medial microvibrissae to lateral macrovibrissae). However, comparative data are lacking, and current histological studies on pinniped vibrissae only focus on the largest ventrolateral vibrissae. Consequently, we investigated the microstructure, medial-to-lateral innervation, and morphometric trends in harp seal (Pagophilus groenlandicus) vibrissal follicle-sinus complexes (F-SCs). The F-SCs were sectioned either longitudinally or in cross-section and stained with a modified Masson's trichrome stain (microstructure) or Bodian's silver stain (innervation). All F-SCs exhibited a tripartite blood organization system. The dermal capsule thickness, the distribution of major branches of the deep vibrissal nerve, and the hair shaft design were more symmetrical in medial F-SCs, but these features became more asymmetrical as the F-SCs became more lateral. Overall, the mean axon count was 1,221 422.3 axons/F-SC and mean axon counts by column ranged from 550 97.4 axons/F-SC (medially, column 11) to 1,632 173.2 axons/F-SC (laterally, column 2). These values indicate a total of 117,216 axons innervating the entire mystacial vibrissal array. The mean axon count of lateral F-SCs was 1,533 192.9 axons/ F-SC, which is similar to values reported in the literature for other pinniped F-SCs. Our data suggest that conventional studies that only examine the largest ventrolateral vibrissae may overestimate the total innervation by 20%. However, our study also accounts for variation in quantification methods and shows that conventional analyses likely only overestimate innervation by 10%. The relationship between axon count and cross-sectional F-SC surface area was nonlinear, and axon densities were consistent across the snout. Our data indicate that harp seals exhibit microstructural and innervational differences between their microvibrissae (columns 8-11) and macrovibrissae (columns 1-7). We hypothesize that this feature is conserved among pinnipeds and may result in functional compartmentalization within their mystacial vibrissal arrays.

published proceedings

  • Brain Behav Evol

altmetric score

  • 3.75

author list (cited authors)

  • Mattson, E. E., & Marshall, C. D.

citation count

  • 47

complete list of authors

  • Mattson, Erin E||Marshall, Christopher D

publication date

  • September 2016