Comparative feeding kinematics and performance of odontocetes: belugas, Pacific white-sided dolphins and long-finned pilot whales. Academic Article uri icon

abstract

  • Cetaceans are thought to display a diversity of feeding modes that are often described as convergent with other more basal aquatic vertebrates (i.e. actinopterygians). However, the biomechanics of feeding in cetaceans has been relatively ignored by functional biologists. This study investigated the feeding behavior, kinematics and pressure generation of three odontocetes with varying feeding modes (belugas, Delphinapterus leucas; Pacific white-sided dolphins, Lagenorhynchus obliquidens; and long-finned pilot whales, Globicephala melas). Four feeding phases were recognized in all odontocetes: (I) preparatory, (II) jaw opening, (III) gular depression, and (IV) jaw closing. Belugas relied on a feeding mode that was composed of discrete ram and suction components. Pacific white-sided dolphins fed using ram, with some suction for compensation or manipulation of prey. Pilot whales were kinematically similar to belugas but relied on a combination of ram and suction that was less discrete than belugas. Belugas were able to purse the anterior lips to occlude lateral gape and form a small, circular anterior aperture that is convergent with feeding behaviors observed in more basal vertebrates. Suction generation in odontocetes is a function of hyolingual displacement and rapid jaw opening, and is likely to be significantly enhanced by lip pursing behaviors. Some degree of subambient pressure was measured in all species, with belugas reaching 126 kPa. Functional variations of suction generation during feeding demonstrate a wider diversity of feeding behaviors in odontocetes than previously thought. However, odontocete suction generation is convergent with that of more basal aquatic vertebrates.

published proceedings

  • J Exp Biol

author list (cited authors)

  • Kane, E. A., & Marshall, C. D.

citation count

  • 43

complete list of authors

  • Kane, EA||Marshall, CD

publication date

  • December 2009