A molecular phylogenetic analysis of the "true thrushes" (Aves: Turdinae).
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
The true thrushes (Passeriformes: Muscicapidae, subfamily Turdinae) are a speciose and widespread avian lineage presumed to be of Old World origin. Phylogenetic relationships within this assemblage were investigated using mitochondrial DNA (mtDNA) sequence data that included the cytochrome b and ND2 genes. Our ingroup sampling included 54 species representing 17 of 20 putative turdine genera. Phylogenetic trees derived via maximum parsimony and maximum likelihood were largely congruent. Most of the Turdine taxa sampled can be placed into one of six well supported clades. Our data indicate a polyphyletic Zoothera which can be divided into at least two (Afro-Asian and Austral-Asian) main clades. The genus Turdus, as presently recognized, is paraphyletic but forms a well supported clade with the addition of three mostly monotypic genera (Platycichla, Nesocichla, and Cichlherminia). We identify an exclusively New World clade that includes a monophyletic Catharus, Hylocichla, Cichlopsis, Entomodestes, Ridgwayia, and Ixoreus. Members of the morphologically and behaviorally distinct genera Sialia, Myadestes, and Neocossyphus unexpectedly form a basal clade. Using multiple outgroup choices, we show that this group is distantly related, but unequivocally the sister group to the remaining Turdines sampled. The Turdinae appear to be a relatively old songbird lineage, originating in the mid to late Miocene. If the Turdinae are indeed Old World in origin, our data indicate a minimum of three separate invasions of the New World.