Seasonal variation in the total volume of Leydig cells in stallions is explained by variation in cell number rather than cell size.
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
Stereological methods were employed in two studies with stallions 1) to determine if seasonal variation in the total volume of Leydig cells is a function of cell number or cell size and 2) to characterize the annual cycle of the Leydig cell population. In the first study, numbers of Leydig cells were calculated for 28 adult (4-20 yr) stallions in the breeding or nonbreeding seasons from nuclear volume density (percentage of the decapsulated testicular volume), parenchymal volume (decapsulated testicular volume), and the volume of individual Leydig cell nuclei. The average volume of the individual Leydig cells was calculated as the total Leydig cell volume/testis (volume density of Leydig cells in the parenchymal volume times parenchymal volume) divided by the number of Leydig cells. The average volume of an individual Leydig cell varied within each season, but means were almost identical for the nonbreeding (6.94 +/- 0.61 picoliter) and breeding (6.91 +/- 0.45 picoliter) seasons. However, Leydig cell numbers per testis were 57% higher in the breeding season, which also had a 58% higher total volume of Leydig cells per testis. In the second study, the numbers of Leydig cells were determined for 43-48 adult horses in each 3-mo period for 12 mo. The number of Leydig cells per testis in May-July was higher (p less than 0.05) than in August-October or February-April, and higher (p less than 0.01) than in November-January. Thus, seasonal fluctuations in the total volume of Leydig cells in adult stallions is a function of the number of Leydig cells that cycle annually.