Forecasting experiments of a dynamical-statistical model of the sea surface temperature anomaly field based on the improved self-memorization principle Academic Article uri icon


  • Abstract. With the objective of tackling the problem of inaccurate long-term El NioSouthern Oscillation(ENSO) forecasts, this paper develops a new dynamicalstatistical forecast model of the sea surface temperature anomaly(SSTA) field. To avoid single initial prediction values, a self-memorization principle is introduced to improve the dynamical reconstruction model, thus making the model more appropriate for describing such chaotic systems as ENSO events. The improved dynamicalstatistical model of the SSTA field is used to predict SSTA in the equatorial eastern Pacific and during El Nio and La Nia events. The long-term step-by-step forecast results and cross-validated retroactive hindcast results of time seriesT1 andT2 are found to be satisfactory, with a Pearson correlation coefficient of approximately0.80 and a mean absolute percentage error(MAPE) of less than 15%. The corresponding forecast SSTA field is accurate in that not only is the forecast shape similar to the actual field but also the contour lines are essentially the same. This model can also be used to forecast the ENSO index. The temporal correlation coefficient is0.8062, and the MAPE value of 19.55% is small. The difference between forecast results in spring and those in autumn is not high, indicating that the improved model can overcome the spring predictability barrier to some extent. Compared with six mature models published previously, the present model has an advantage in prediction precision and length, and is a novel exploration of the ENSO forecast method.

published proceedings


altmetric score

  • 1.25

author list (cited authors)

  • Hong, M., Chen, X. i., Zhang, R., Wang, D., Shen, S., & Singh, V. P.

citation count

  • 4

complete list of authors

  • Hong, Mei||Chen, Xi||Zhang, Ren||Wang, Dong||Shen, Shuanghe||Singh, Vijay P

publication date

  • April 2018