Winter as a nutritional bottleneck for North American porcupines (Erethizon dorsatum). Academic Article uri icon

abstract

  • North American porcupines are distributed across a wide variety of habitats where they consume many different species of plants. Winter is a nutritional bottleneck for northern populations, because porcupines remain active when environmental demands are high and food quality is low. We used captive porcupines to examine physiological responses to low-quality diets at high energy demands during winter at ambient temperatures as low as -39 degrees C. We did not observe an endogenous pattern of body mass gain or loss when porcupines were fed a low nitrogen diet (1.1% dry matter) ad libitum through winter. Dry matter intake declined from 43.6 to 14.6 g kg(-0.75) d(-1) even though ambient temperatures declined from -3 to -30 degrees C, which indicates a seasonal decrease in metabolic rate. Porcupines consuming white spruce needles maintained digestive efficiency for energy (61%) and neutral detergent fiber (NDF) (50%). However, low requirements for energy (398 kJ kg(-0.75) d(-1)) and nitrogen (209 mg kg(-0.75) d(-1)) minimized the loss of body mass when intakes were low and plant toxins increased urinary losses of energy and nitrogen. Porcupines were also able to tolerate low intakes of sodium, even when dietary potassium loads were high. Porcupines use a flexible strategy to survive winter: low requirements are combined with a high tolerance for dietary imbalances that minimize the use of body stores when demands exceed supply. However, body stores are rapidly restored when conditions allow. Porcupines posses many physiological abilities similar to specialist herbivores, but retain the ability of a generalist to survive extreme conditions by using a variety of foods.

published proceedings

  • J Comp Physiol B

author list (cited authors)

  • Coltrane, J. A., & Barboza, P. S.

citation count

  • 17

complete list of authors

  • Coltrane, Jessica A||Barboza, Perry S

publication date

  • January 2010