Wilkes, Jason C. (2008-08). A PERSPECTIVE ON THE NUMERICAL AND EXPERIMENTAL CHARACTERISTICS OF MULTI-MODE DRY-FRICTION WHIP AND WHIRL. Master's Thesis. Thesis uri icon

abstract

  • The present work investigates the nature of dry-friction whip and whirl through experimental and numerical methods. Efforts of the author, Dyck, Pavalek, and coworkers enabled the design and construction of a test rig that demonstrated and recorded accurately the character of multi-mode dry-friction whip and whirl. These tests examined steady state whip and whirl characteristics for a variety of rub materials and clearances. Results provided by the test rig are unparalleled in quality and nature to those seen in literature and possess several unique characteristics that are presented and discussed. A simulation model is constructed using the Texas A and M University (TAMU) Turbomachinery Laboratory rotordynamic software suite XLTRC2 comprised of tapered Timoshenko beam finite elements to form multiple degree of freedom rotor and stator models. These models are reduced by component mode synthesis to discard highfrequency modes while retaining physical coordinates at locations for nonlinear interactions. The interaction at the rub surface is modeled using a nonlinear Hunt and Crossley contact model with coulomb friction. Dry-friction simulations are performed for specific test cases and compared against experimental data to determine the validity of the model. These comparisons are favorable, capturing accurately the nature of dryfriction whirl. Experimental and numerical analysis reveals the existence of multiple whirl and whip regions spanning the entire range of frequencies excited during whirl, despite claims of previous investigations that these regions are predicted by Black's whirl solution, but are not excited in simulations or experiments. In addition, spectral analysis illustrates the presence of harmonic sidebands that accompany the fundamental whirl solution. These sidebands are more evident in whip, and can excite higher-frequency whirl solutions. Experimental evidence also shows a strong nonlinearity present in the whirl frequency ratio, which is greater than that predicted by the measured radius-toclearance ratio at the rub location. Results include whirl frequencies 250% of that predicted by the measured radius-to-clearance ratio.

publication date

  • August 2008