Investigation on voltaic effect based on one-dimensional TiO2 nanotube array thin film Academic Article uri icon

abstract

  • © 2018 Chinese Physical Society. This work is to develop a high-reliability long-life high-conversion-efficiency radio-isotope microbattery in order to meet power requirements of micro-electromechanical systems, micro-sensors, micro-actuators, wireless sensing net, and other electron devices working in harsh circumstances, such as polar, desert, subsea, outer surface, etc. Compared with traditional dry batteries, chemical batteries, fuel cells and solar cells, the radioactive isotope batteries have long service life, higher energy density, strong adaptability to environment, good work stability, no maintenance, and miniaturized size, etc. These advantages make the β voltaic battery an attractive alternative. In this paper we present a β voltaic battery with enhanced β voltaic effect by using a wide-bandgap semiconductor TiO 2 nanotube array thin film. An electrochemical anodic oxidation method is used to prepare the vertically oriented and highly ordered TiO 2 nanotube array film on Ti plate. Electrolyte solution consists of ammonium fluoride, ethylene glycol, and deionized water. The structure (TiO 2 nanotube array with diameter about 80-100 nm, wall thickness about 15-25 nm, and length 9 μm) is characterized by field emission scanning electron microscope. The microstructure of the TiO 2 nanotube array is characterized using X-ray diffraction. The effects of annealing condition on optical and electrical properties are studied. The electrical property is characterized by Keithley model 2450 source meter semiconductor characterization system in dark at room temperature. The μ voltaic batteries are assembled as a sandwiched structure ( 63 Ni/TiO 2 nanotube arrays film/Ti) using a radioisotope 63 Ni plate and TiO 2 nanotube array films. The experimental results show that the black TiO 2 nanotube array film annealed at 450℃ in argon atmosphere could creates high visible-ultraviolet absorption due to a great many of oxygen vacancy defects generated in TiO 2 nanotube array film. The oxygen vacancy signals are found by electron spin resonance. Compared with the planar structure, the nano-porous array structure has strong absorption to μ particles: most of the μ particles enter into the pores and are reflected or absorbed by the surface of the tube walls. With a 10 mCi 63 Ni radiation source, the μ voltaic battery using black TiO 2 nanotube array film can generate an open-circuited voltage of 1.02 V, a short-circuited current of 75.52 nA, and a maximum effective conversion efficiency of 22.48%.

author list (cited authors)

  • Wang Na, .., Ma Yang, .., Chen Chang-Song, .., Chen Jiang, .., San Hai-Sheng, .., Chen Ji-Ge, .., & Cheng Zheng-Dong, ..

citation count

  • 0

publication date

  • January 2018