A potential role for fructose-2,6-bisphosphate in the stimulation of hepatic glucokinase gene expression. Academic Article uri icon


  • The effects of fructose-2,6-bisphosphate (F-2,6-P(2)) on hepatic glucokinase (GK) and glucose-6-phosphatase (G-6-Pase) gene expression were investigated in streptozotocin-treated mice, which exhibited undetectable levels of insulin. Hepatic F-2,6-P(2) levels were manipulated by adenovirus-mediated overexpression of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. Streptozotocin treatment alone or with infusion of control adenovirus leads to a dramatic decrease in hepatic F-2,6-P(2) content compared with normal nondiabetic mice. This is accompanied by a 14-fold decrease in GK and a 3-fold increase in G-6-Pase protein levels, consistent with a diabetic phenotype. Streptozotocin-treated mice that were infused with adenovirus-overexpressing an engineered 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase with high kinase activity and little bisphosphatase activity showed high levels of hepatic F-2,6-P(2). Surprisingly, these mice had a 13-fold increase in GK protein and a 2-fold decrease in G-6-Pase protein compared with diabetic controls. The restoration of GK is associated with increases in the phosphorylation of Akt upon increasing hepatic F-2,6-P(2) content. Moreover, the changes in levels of F-2,6-P(2) and Akt phosphorylation revealed a pattern similar to that of streptozotocin mice treated with insulin, indicating that increasing hepatic content of F-2,6-P(2) mimics the action of insulin. Because G-6-Pase gene expression was down-regulated only after the restoration of euglycemia, the effect of F-2,6-P(2) was indirect. Also, the lowering of blood glucose by high F-2,6-P(2) was associated with an increase in hepatic nuclear factor 1-alpha protein, a transcription factor involved in G-6-Pase gene expression. In conclusion, F-2,6-P(2) can stimulate hepatic GK gene expression in an insulin-independent manner and can secondarily affect G-6-Pase gene expression by lowering the level of plasma glucose.

published proceedings

  • Endocrinology

altmetric score

  • 3

author list (cited authors)

  • Wu, C., Okar, D. A., Stoeckman, A. K., Peng, L., Herrera, A. H., Herrera, J. E., Towle, H. C., & Lange, A. J.

citation count

  • 37

complete list of authors

  • Wu, Chaodong||Okar, David A||Stoeckman, Angela K||Peng, Li-Jen||Herrera, Amy H||Herrera, Julio E||Towle, Howard C||Lange, Alex J

publication date

  • February 2004