Volume and rigidity of hyperbolic polyhedral 3‐manifolds
Academic Article
-
- Overview
-
- Identity
-
- Additional Document Info
-
- View All
-
Overview
abstract
-
© 2018 London Mathematical Society We investigate the rigidity of hyperbolic cone metrics on 3-manifolds which are isometric gluing of ideal and hyper-ideal tetrahedra in hyperbolic spaces. These metrics will be called ideal and hyper-ideal hyperbolic polyhedral metrics. It is shown that a hyper-ideal hyperbolic polyhedral metric is determined up to isometry by its curvature and a decorated ideal hyperbolic polyhedral metric is determined up to isometry and change of decorations by its curvature. The main tool used in the proof is the Fenchel dual of the volume function.
published proceedings
citation count
complete list of authors
publication date
publisher
published in
Identity
Digital Object Identifier (DOI)
Additional Document Info
start page
end page
volume
issue