Role of yeast SIR genes and mating type in directing DNA double-strand breaks to homologous and non-homologous repair paths. Academic Article uri icon

abstract

  • Eukaryotes have acquired many mechanisms to repair DNA double-strand breaks (DSBs) [1]. In the yeast Saccharomyces cerevisiae, this damage can be repaired either by homologous recombination, which depends on the Rad52 protein, or by non-homologous end-joining (NHEJ), which depends on the proteins yKu70 and yKu80 [2] [3]. How do cells choose which repair pathway to use? Deletions of the SIR2, SIR3 and SIR4 genes - which are involved in transcriptional silencing at telomeres and HM mating-type loci (HMLalpha and HMRa) in yeast [4] - have been reported to reduce NHEJ as severely as deletions of genes encoding Ku proteins [5]. Here, we report that the effect of deleting SIR genes is largely attributable to derepression of silent mating-type genes, although Sir proteins do play a minor role in end-joining. When DSBs were made on chromosomes in haploid cells that retain their mating type, sir Delta mutants reduced the frequency of NHEJ by twofold or threefold, although plasmid end-joining was not affected. In diploid cells, sir mutants showed a twofold reduction in the frequency of NHEJ in two assays. Mating type also regulated the efficiency of DSB-induced homologous recombination. In MATa/MATalpha diploid cells, a DSB induced by HO endonuclease was repaired 98% of the time by gene conversion with the homologous chromosome, whereas in diploid cells with an alpha mating type (matDelta/MATalpha) repair succeeded only 82% of the time. Mating-type regulation of genes specific to haploid or diploid cells plays a key role in determining which pathways are used to repair DSBs.

published proceedings

  • Curr Biol

altmetric score

  • 12

author list (cited authors)

  • Lee, S. E., Pques, F., Sylvan, J., & Haber, J. E.

citation count

  • 173

complete list of authors

  • Lee, SE||Pâques, F||Sylvan, J||Haber, JE

publication date

  • July 1999