Wave energetics of the southern hemisphere of Mars Academic Article uri icon

abstract

  • © 2018 Elsevier Inc. An assessment of the energetics of transient waves in the southern hemisphere of Mars is presented using the Mars Analysis Correction Data Assimilation (MACDA) dataset (v1.0) and the eddy kinetic energy equation. The dataset is divided into four representative periods covering the summer and winter solstices, a late fall period, and an early spring period for three Mars years. Spring eddies are the most intense, with eddies during the fall being less intense due to a marginally more stable mean-temperature profile and reduced recirculation of ageostrophic geopotential fluxes compared to the spring. Eddy kinetic energy during winter is reduced in intensity as a result of the winter solstitial pause in wave activity, and eddy kinetic energy during the summer is limited. Baroclinic energy conversion acts as a source in fall and spring but disappears during the winter as a result of a stabilized vertical temperature profile. Barotropic energy conversion acts as both a source and a sink of eddy kinetic energy, being most positive during the solstitial pause. Eddies take a northwest to southeast track across the southern highlands in the fall but have a more zonal track in the spring due to stronger eddy kinetic energy advection. Wave energetics is less intense in the southern compared to the northern hemisphere as a result of a shallower baroclinically unstable vertical profile.

altmetric score

  • 2.2

author list (cited authors)

  • Battalio, M., Szunyogh, I., & Lemmon, M.

citation count

  • 6

publication date

  • July 2018

published in