COVARIANCE APPROXIMATION FOR LARGE MULTIVARIATE SPATIAL DATA SETS WITH AN APPLICATION TO MULTIPLE CLIMATE MODEL ERRORS
Academic Article
-
- Overview
-
- Research
-
- Identity
-
- Additional Document Info
-
- Other
-
- View All
-
Overview
abstract
-
This paper investigates the cross-correlations across multiple climate model errors. We build a Bayesian hierarchical model that accounts for the spatial dependence of individual models as well as cross-covariances across different climate models. Our method allows for a nonseparable and nonstationary cross-covariance structure. We also present a covariance approximation approach to facilitate the computation in the modeling and analysis of very large multivariate spatial data sets. The covariance approximation consists of two parts: a reduced-rank part to capture the large-scale spatial dependence, and a sparse covariance matrix to correct the small-scale dependence error induced by the reduced rank approximation. We pay special attention to the case that the second part of the approximation has a block-diagonal structure. Simulation results of model fitting and prediction show substantial improvement of the proposed approximation over the predictive process approximation and the independent blocks analysis. We then apply our computational approach to the joint statistical modeling of multiple climate model errors. © 2012 Institute of Mathematical Statistics.
published proceedings
-
ANNALS OF APPLIED STATISTICS
author list (cited authors)
-
Sang, H., Jun, M., & Huang, J. Z.
citation count
complete list of authors
-
Sang, Huiyan||Jun, Mikyoung||Huang, Jianhua Z
publication date
publisher
published in
Research
keywords
-
Climate Model Output
-
Co-regionalization
-
Gaussian Processes
-
Large Spatial Data Set
-
Multivariate Spatial Process
Identity
Digital Object Identifier (DOI)
URI
-
https://hdl.handle.net/1969.1/179182
Additional Document Info
start page
end page
volume
issue
Other
URL
-
http://dx.doi.org/10.1214/11-AOAS478
user-defined tag