Power Generation Targets from Hot Composite Curves Academic Article uri icon

abstract

  • The paper proposes a simple systematic procedure to target thermodynamic power generation limits from a set of heat source streams. The procedure takes the form of an algebraic targeting approach commonly applied in process heat integration. It allows the designer to quickly determine the maximum amount of power that can theoretically be generated from the available heat in thermodynamic cycles. The paper describes the procedure and is applicability in the context of common data availability for heat source streams in the form of a Composite Curve or Total Site Profile (hot composite curves) commonly developed in heat integration. The application of the procedure is illustrated with examples.
  • © 2018 by the authors. The paper proposes a simple systematic procedure to target thermodynamic power generation limits from a set of heat source streams. The procedure takes the form of an algebraic targeting approach commonly applied in process heat integration. It allows the designer to quickly determine the maximum amount of power that can theoretically be generated from the available heat in thermodynamic cycles. The paper describes the procedure and is applicability in the context of common data availability for heat source streams in the form of a Composite Curve or Total Site Profile (hot composite curves) commonly developed in heat integration. The application of the procedure is illustrated with examples.

published proceedings

  • Energies

citation count

  • 1

complete list of authors

  • Al-Ani, Omar||Linke, Patrick

publication date

  • February 2018