A model for predicting bell weevil (Coleoptera : Curculionidae) overwintering survivorship
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
Boll weevil, Anthonomus grandis grandis Boheman, overwintering survivorship was quantified monthly throughout the overwintering period (October to May) in Texas High Plains and Rolling Plains for 12 yr. A negative exponential model was developed to dynamically predict survivorship throughout the overwintering months. Survivorship was modeled as a function of the number of days that weevils were in the habitat, negative degree-days (<0.0C), positive degree-days (>6.1C), rainfall, and mortality during the first month of overwintering. First month mortality was modeled as a function of overwintering survival potential of weevils determined by dissection examination of their body lipid content and gonad atrophy. A nonlinear iterative multiple regression analysis showed that the model explained 94% of the variability in parameterization-verification data; a goodness-of-fit test showed that 97% of the estimated survival values did not significantly depart from their corresponding observed values. With independent validation data, 94% of the variability was explained by the survival model; a goodness-of-fit test for validation data showed that 96% of the predicted survival values did not significantly depart from their corresponding observed values. This model offers a greater understanding of boll weevil overwintering biology as it demonstrates a link between biological and climatic parameters. The model can be used to forecast weevil survivorship throughout the overwintering period in the Texas Plains.