Land management practices interactively affect wetland beetle ecological and phylogenetic community structure. Academic Article uri icon


  • Management practices can disturb ecological communities in grazing lands, which represent one-quarter of land surface. But three knowledge gaps exist regarding disturbances: disturbances potentially interact but are most often studied singly; experiments with multiple ecosystems as treatment units are rare; and relatively new metrics of phylogenetic community structure have not been widely applied. We addressed all three of these needs with a factorial experiment; 40 seasonal wetlands embedded in a Florida ranch were treated with pasture intensification, cattle exclosure, and prescribed fire. Treatment responses were evaluated through four years for aquatic beetle (Coleoptera: Adephaga) assemblages using classic ecological metrics (species richness, diversity) and phylogenetic community structure (PCS) metrics. Adephagan assemblages consisted of 23 genera representing three families in a well-resolved phylogeny. Prescribed fire significantly reduced diversity one year post-fire, followed by a delayed pasture X fire interaction. Cattle exclosure significantly reduced one PCS metric after one year and a delayed pasture x fence x fire interaction was detected with another PCs metric. Overall, effects of long-term pasture intensification were modified by cattle exclosure and prescribed fire. Also, PCS metrics revealed effects otherwise undetected by classic ecological metrics. Management strategies (e.g., "flash grazing," prescribed fires) in seasonal wetlands may successfully balance economic gains from high forage quality with ecological benefits of high wetland diversity in otherwise simplified grazing lands. Effects are likely taxon specific; multiple taxa should be similarly evaluated.

published proceedings

  • Ecol Appl

author list (cited authors)

  • Kelly, S. L., Song, H., & Jenkins, D. G.

citation count

  • 8

complete list of authors

  • Kelly, Sandor L||Song, Hojun||Jenkins, David G

publication date

  • June 2015