Modern energy density functional for properties of finite nuclei and nuclear matter
Conference Paper
Overview
Additional Document Info
View All
Overview
abstract
We describe a method, based on the simulated annealing approach, for determining a modern energy density functional within the Skyrme Hartree - Fock (HF) theory by carrying out a fit to extensive set of experimental data and including important constraints on the Skyrme parameters. We then present results of calculations for the excitation strength functions and centroid energies of giant resonances within the HF-based random phase approximation and discuss the current status of the nuclear matter (NM) incompressibility coefficient and the symmetry energy density, which are the needed ingredients for extending our knowledge of the equation of state (energy as a function of neutron and proton densities) of symmetric and asymmetric NM beyond the saturation point of the symmetric NM.