Effectiveness of metal-metal and metal-organic compound combinations against Plutella xylostella: implications for plant elemental defense. Academic Article uri icon

abstract

  • Plants that contain elevated foliar metal concentrations can be categorized as accumulators or, if the accumulation is extreme, hyperaccumulators. The defense hypothesis suggests that these plants may be defended against folivore attack, and recent research has indicated that metal concentrations at or below the accumulator range may be defensively effective. This experiment explored the toxicity of four metals hyper-accumulated by plants (Cd, Ni, Pb, and Zn) and asked if combinations of metals, or metals and organic chemicals, might broaden the defensive effectiveness of metals. Metals were used alone and in certain metal + metal (Zn plus Ni, Pb, or Cd) and metal + organic defensive chemical (Ni plus tannic acid, atropine, or nicotine) combinations. Artificial diet amended with these treatments was fed to larvae of the crucifer specialist herbivore Plutella xylostella. Combinations of metals and metals + organic chemicals significantly decreased survival and pupation rates, compared to single treatments, for at least some concentrations in every experiment. Effects of combinations were additive rather than synergistic or antagonistic. Because Zn enhanced the toxicity of other metals and Ni enhanced the toxicity of organic defensive chemicals, our findings suggest that the defensive effects of metals are more widespread among plants than previously believed. They also support the hypothesis that herbivore defense may have led to the evolution of metal hyper-accumulation by increasing the preexisting defensive effects of metals at accumulator levels in plants.

published proceedings

  • J Chem Ecol

author list (cited authors)

  • Jhee, E. M., Boyd, R. S., & Eubanks, M. D.

citation count

  • 41

complete list of authors

  • Jhee, Edward M||Boyd, Robert S||Eubanks, Micky D

publication date

  • January 2006