Mariner transposition and transformation of the yellow fever mosquito, Aedes aegypti. Academic Article uri icon

abstract

  • The mariner transposable element is capable of interplasmid transposition in the embryonic soma of the yellow fever mosquito, Aedes aegypti. To determine if this demonstrated mobility could be utilized to genetically transform the mosquito, a modified mariner element marked with a wild-type allele of the Drosophila melanogaster cinnabar gene was microinjected into embryos of a kynurenine hydroxylase-deficient, white-eyed recipient strain. Three of 69 fertile male founders resulting from the microinjected embryos produced families with colored-eyed progeny individuals, a transformation rate of 4%. The transgene-mediated complementation of eye color was observed to segregate in a Mendelian manner, although one insertion segregates with the recessive allele (female-determining) of the sex-determining locus, and a separate insertion is homozygous lethal. Molecular analysis of selected transformed families demonstrated that a single complete copy of the construct had integrated independently in each case and that it had done so in a transposase-mediated manner. The availability of a mariner transformation system greatly enhances our ability to study and manipulate this important vector species.

published proceedings

  • Proc Natl Acad Sci U S A

altmetric score

  • 9.25

author list (cited authors)

  • Coates, C. J., Jasinskiene, N., Miyashiro, L., & James, A. A.

citation count

  • 313

complete list of authors

  • Coates, CJ||Jasinskiene, N||Miyashiro, L||James, AA

publication date

  • March 1998