Lipogenesis in a wing-polymorphic cricket: Canalization versus morph-specific plasticity as a function of nutritional heterogeneity. Academic Article uri icon

abstract

  • The influence of variable nutritional input on life history adaptation is a central, but incompletely understood aspect of life history physiology. The wing-polymorphic cricket, Gryllus firmus, has been extensively studied with respect to the biochemical basis of life history adaptation, in particular, modification of lipid metabolism that underlies the enhanced accumulation of lipid flight fuel in the dispersing morph [LW(f)=long wings with functional flight muscles] relative to the flightless (SW=short-winged) morph. To date, biochemical studies have been undertaken almost exclusively using a single laboratory diet. Thus, the extent to which nutritional heterogeneity, likely experienced in the field, influences this key morph adaptation is unknown. We used the experimental approach of the Geometric Framework for Nutrition and employed 13 diets that differed in the amounts and ratios of protein and carbohydrate to assess how nutrient amount and balance affects morph-specific lipid biosynthesis. Greater lipid biosynthesis and allocation to the soma in the LW(f) compared with the SW morph (1) occurred across the entire protein-carbohydrate landscape and (2) is likely an important contributor to elevated somatic lipid in the LW(f) morph across the entire protein-carbohydrate landscape. Nevertheless, dietary carbohydrate strongly affected lipid biosynthesis in a morph-specific manner (to a greater degree in the LW(f) morph). Lipogenesis in the SW morph may be constrained due to its more limited lipid storage capacity compared to the LW(f) morph. Elevated activity of NADP+-isocitrate dehydrogenase (NADP+-IDH), an enzyme that produces reducing equivalents for lipid biosynthesis, was correlated with and may be an important cause of the increased lipogenesis in the LW(f) morph across most, but not all regions of the protein-carbohydrate landscape. By contrast, ATP-citrate lyase (ACL), an enzyme that catalyzes the first step in the pathway of fatty acid biosynthesis, showed complex morph-specific patterns of activity that were strongly contingent upon diet. Morph-specific patterns of NADP+-IDH and ACL activities across the nutrient landscape were much more complex than expected from previous studies on a single diet. Collectively, our results indicate that the biochemical basis of an important life history adaptation, morph-specific lipogenesis, can be canalized in the face of substantial nutritional heterogeneity. However, in some regions of the protein-carbohydrate landscape, it is strongly modulated in a morph-specific manner.

published proceedings

  • J Insect Physiol

author list (cited authors)

  • Zera, A. J., Clark, R., & Behmer, S.

citation count

  • 5

complete list of authors

  • Zera, Anthony J||Clark, Rebecca||Behmer, Spence

publication date

  • December 2016