Distribution, origin, and transformation of metal and metalloid pollution in vegetable fields, irrigation water, and aerosols near a Pb-Zn mine Academic Article uri icon

abstract

  • Pollution of arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), and zinc (Zn) in vegetable fields was investigated near a Pb-Zn mine that has been exploited for over 50 years without a tailing reservoir. A total of 205 water, soil, and aerosol samples were taken and quantified by combined chemical, spectrometric, and mineral analytical methods. The pollution origins were identified by Pb isotopes and the pathways of transformation and transport of the elements and minerals was studied. The data showed that the vegetable fields were seriously polluted by As, Cd, and Pb. Some concentrations in the samples were beyond the regulatory levels and not suitable for agricultural activities. This study revealed that: (1) particulate matter is a major pollution source and an important carrier of mineral particles and pollutants; (2) the elements from the polluted water and soils were strongly correlated with each other; (3) Pb isotope ratios from the samples show that Pb minerals were the major pollution sources in the nearby vegetable fields, and the aerosols were the main carrier of mining pollution; (4) the alkaline, rich-carbonate, and wet conditions in this area promoted the weathering and transformation of galena into the secondary minerals, anglesite and cerussite, which are significant evidence of such processes; (5) the soil and the aerosols are a recycled secondary pollution source for each other when being re-suspended with wind.Highlights• Mining activities generated heavy metal pollution in fields around a Pb-Zn mine• The elements from water and soils are strongly correlated• Anglesite and cerussite are evidence of galena transformation into secondary minerals• Particulate matter is an important transport carrier of pollution.

author list (cited authors)

  • Luo, L., Chu, B., Liu, Y., Wang, X., Xu, T., & Bo, Y.

citation count

  • 14

publication date

  • July 2014