Recent computational studies on transition‐metal carbon–hydrogen bond activation of alkanes Academic Article uri icon


  • © 2018 Wiley Periodicals, Inc. This review on computational studies of transition-metal promoted CH activation of light linear alkanes will cover computational work published since 2010, following upon seminal reviews by Niu and Hall (Chem. Rev. 2000, 100, 353), Vastine and Hall (Coord. Chem. Rev. 2009, 253, 1202), and Balcells et al. (Chem. Rev. 2010, 110, 749). The computational studies are surveyed in terms of the mechanistic nature of the CH activation step (oxidative addition, σ-bond metathesis, 1,2 addition, or electrophilic activation), the type of CH bond being activated (primary or secondary), and the effect of metal, ligand, and alkane size on the reaction process. In addition to the primary focus on theoretical mechanistic investigations via calculated thermodynamics and kinetics, this review aims to bridge the computational and experimental observations and to highlight the insights that computational chemistry delivers to understanding the nature of CH activation of linear alkanes mediated by transition metals.

author list (cited authors)

  • Guan, J., Zarić, S. D., Brothers, E. N., & Hall, M. B.

citation count

  • 2

publication date

  • February 2018