Curvilinear immersed boundary method for simulating coupled flow and bed morphodynamic interactions due to sediment transport phenomena Academic Article uri icon

abstract

  • The fluid-structure interaction curvilinear immersed boundary (FSI-CURVIB) numerical method of Borazjani et al. [3] is extended to simulate coupled flow and sediment transport phenomena in turbulent open-channel flows. The mobile channel bed is discretized with an unstructured triangular mesh and is treated as a sharp-interface immersed boundary embedded in a background curvilinear mesh used to discretize the general channel outline. The unsteady Reynolds-averaged Navier-Stokes (URANS) equations closed with the k- turbulence model are solved numerically on a hybrid staggered/non-staggered grid using a second-order accurate fractional step method. The bed deformation is calculated by solving the sediment continuity equation in the bed-load layer using an unstructured, finite-volume formulation that is consistent with the CURVIB framework. Both the first-order upwind and the higher-order hybrid GAMMA schemes [12] are implemented to discretize the bed-load flux gradients and their relative accuracy is evaluated through a systematic grid refinement study. The GAMMA scheme is employed in conjunction with a sand-slide algorithm for limiting the bed slope at locations where the material angle of repose condition is violated. The flow and bed deformation equations are coupled using the partitioned loose-coupling FSI-CURVIB approach [3]. The hydrodynamic module of the method is validated by applying it to simulate the flow in an 180 open-channel bend with fixed bed. To demonstrate the ability of the model to simulate bed morphodynamics and evaluate its accuracy, we apply it to calculate turbulent flow through two mobile-bed open channels, with 90 and 135 bends, respectively, for which experimental measurements are available. 2011 Elsevier Ltd.

published proceedings

  • ADVANCES IN WATER RESOURCES

altmetric score

  • 0.5

author list (cited authors)

  • Khosronejad, A., Kang, S., Borazjani, I., & Sotiropoulos, F.

citation count

  • 99

complete list of authors

  • Khosronejad, Ali||Kang, Seokkoo||Borazjani, Iman||Sotiropoulos, Fotis

publication date

  • January 2011