Electrical properties of nano-resistors made from the Zr-doped HfO2 high-k dielectric film
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
2018 IOP Publishing Ltd. Electrical properties of nano-sized resistors made from the breakdown of the metal-oxide-semiconductor capacitor composed of the amorphous high-k gate dielectric have been investigated under different stress voltages and temperatures. The effective resistance of nano-resistors in the device was estimated from the I-V curve in the high voltage range. It decreased with the increase of the number of resistors. The resistance showed complicated temperature dependence, i.e. it neither behaves like a conductor nor a semiconductor. In the low voltage operation range, the charge transfer was controlled by the Schottky barrier at the nano-resistor/Si interface. The barrier height decreased with the increase of stress voltage, which was probably caused by the change of the nano-resistor composition. Separately, it was observed that the barrier height was dependent on the temperature, which was probably due to the dynamic nano-resistor formation process and the inhomogeneous barrier height distribution. The unique electrical characteristics of this new type of nano-resistors are important for many electronic and optoelectronic applications.