Composition and cycling of colloids in marine environments Academic Article uri icon

abstract

  • Colloidal (COM) or macromolecular organic matter makes up a significant portion of the bulk dissolved organic matter (DOM) pool in aquatic environments. Because of their high specific surface areas and complexation capacities, marine colloids are of great importance not only in the global carbon cycle but also in the biogeochemical cycling of many particle-reactive nuclides and trace elements in the ocean. However, the colloidal pool as a whole is still poorly understood and largely uncharacterized. Recently, cross-flow ultrafiltration and other separation techniques, which have been successfully used to isolate marine colloids, combined with a multitracer approach, have greatly advanced our understanding of the cycling of COM and its associated trace elements in marine environments. In this paper we focus on recent developments on isotopic and elemental composition of colloids which allow organic matter cycling in marine environments to be constrained. Major sections review sampling techniques for aquatic colloids, concentrations and distribution of COM, biochemical and elemental (organic and inorganic) characterization, and stable isotopic (13C and 15N) and radioisotopic (14C and 234Th) characterization of marine colloids. We discuss sources and turnover rates of organic matter in the ocean, importance of benthic boundary layer processes in the cycling of DOM, changes in the paradigms of marine organic matter cycling, and research needs for a better understanding of the biogeochemistry of marine colloids.

author list (cited authors)

  • Guo, L., & Santschi, P. H.

citation count

  • 112

publication date

  • February 1997