Charge-transfer complexes. Ammonia-molecular fluorine, ammonia-molecular chlorine, ammonia-chlorine fluoride, trimethylamine-molecular fluorine, trimethylamine-molecular chlorine, and trimethylamine-chlorine fluoride Academic Article uri icon

abstract

  • Nonempirical electronic structure theory has been applied to several charge-transfer complexes, which involve ammonia and trimethylamine as electron donors, and molecular fluorine, chlorine, and ClF as electron acceptors. The self-consistent field calculations employed both minimum and double-ζ basis sets of contrácted Gaussian functions. For NH3-F2 and NH3-ClF, the importance of d functions on the N, F, and Cl atoms was investigated. In several cases the minimum basis results do not appear reliable. With the geometries of the donor and acceptor molecules fixed from experiment, the equilibrium geometries of the charge-transfer complexes were predicted. N-X (X = nearest halogen atom) distances are 3.08 Å (NH3-F2), 2.93 Å (NH3-Cl2), and 2.65 Å (NH3-ClF), while the predicted binding energies are 0.6 kcal (NH3-F2), 2.4 kcal (NH3-Cl2), and 7.7 kcal (NH3-ClF). NH3-FCl is predicted to be bound by less than 0.1 kcal/mol. The most intriguing prediction is that the binding energies of the ammonia complexes are greater than those of the corresponding trimethylamine complexes. Although this prediction is in distinct disagreement with accepted chemical intuition, it is consistent with Mulliken populations, which suggest a significantly greater “negative charge” on the ammonia N atom than that for trimethylamine. Further, the dipole moment of NH3 is significantly larger than that of N(CH3)3. © 1975, American Chemical Society. All rights reserved.

author list (cited authors)

  • Lucchese, R. R., & Schaefer, H. F.

citation count

  • 32

complete list of authors

  • Lucchese, Robert R||Schaefer, Henry F

publication date

  • December 1975